AI, Data & Tech ... Simplified!

Shorts &ย Articles

๐—ฃ๐—ผ๐—น๐—ถ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—•๐—ถ๐—ฎ๐˜€ ๐—ถ๐—ป ๐—Ÿ๐—Ÿ๐— ๐˜€

ย 

ย 

ย 

ย 

Ali Mirzaei

Sep 23, 2024

ย 

ChatGPT and other Large Language Models (LLMs) exhibit political biases and varying ideological leanings. Here are some key observations:

๐Ÿญ. ๐—˜๐˜ƒ๐—ผ๐—น๐˜‚๐˜๐—ถ๐—ผ๐—ป ๐—ผ๐—ณ ๐—ง๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ฎ๐—ป๐—ฑ ๐—”๐—น๐—ด๐—ผ๐—ฟ๐—ถ๐˜๐—ต๐—บ๐˜€: A possible reason is training earlier models like BERT predominantly on traditional book texts, leaning more conservative (authoritarian), compared to exposing newer models like GPT to broader internet text, leaning more liberal (libertarian). This is enhanced by human reinforcement feedback loops in newer models.
๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐——๐—ถ๐˜€๐˜๐—ฟ๐—ถ๐—ฏ๐˜‚๐˜๐—ถ๐—ผ๐—ป๐˜€: Even non-toxic training data with diverse opinions can lead to biases and unfairness if it includes subtle imbalances in data distributions.
๐Ÿฏ. ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ฆ๐—ถ๐˜‡๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—•๐—ถ๐—ฎ๐˜€ ๐—ฉ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐˜๐—ถ๐—ผ๐—ป: Within model families, larger models might capture more nuanced biases or exhibit better generalization.
๐Ÿฐ. ๐—•๐—ถ๐—ฎ๐˜€ ๐—ถ๐—ป ๐—ฆ๐—ผ๐—ฐ๐—ถ๐—ฎ๐—น ๐˜ƒ๐˜€. ๐—˜๐—ฐ๐—ผ๐—ป๐—ผ๐—บ๐—ถ๐—ฐ ๐—œ๐˜€๐˜€๐˜‚๐—ฒ๐˜€: LLMs demonstrate stronger biases on social issues (Y axis) over economic ones (X axis), potentially due to the predominance of social discussions online compared to economic ones since the latter requires deeper understanding of economics.

[source: Shangbin et al., 2023]

ย 

ย 

share/comment onย ย